DELTA Test Report

Laboratory measurement of sound reduction index for a GLASVÆGGE & DØRE BY GLASSOLUTIONS 10 mm Planiclear glass partition wall with a 10 mm Planiclear glass door

Performed for Scanglas A/S

DANAK 100/2154
Project no.: I101000
Page 1 of 11

31 May 2016
Title
Laboratory measurement of sound reduction index for a GLASVÆGGE & -DØRE BY GLASSOLUTIONS 10 mm Planiclear glass partition wall with a 10 mm Planiclear glass door.

<table>
<thead>
<tr>
<th>Journal no.</th>
<th>Project no.</th>
<th>Our ref.</th>
<th>Date of test</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANAK 100/2154</td>
<td>I101000</td>
<td>MBL/DH/ilk</td>
<td>31 March 2016</td>
</tr>
</tbody>
</table>

Client
Scanglas A/S
Saint-Gobain Denmark
Robert Jacobsens Vej 62A
2300 København S
Denmark

Client ref.
Birgitte Rom

Summary
Laboratory measurement of sound reduction index has been carried out per one-third octave according to the test method of EN ISO 10140:2010 part 1, 2, 4, and 5 for a GLASVÆGGE & -DØRE BY GLASSOLUTIONS 10 mm Planiclear glass partition wall with a 10 mm Planiclear glass door.

Test results evaluated according to EN ISO 717-1:2013:

\[
R_w (C; C_{1/3}) = 31 (-2; -3) \text{ dB}
\]

The report contains a description of the test specimen, a description of the mounting in the laboratory and the test results.

Graph Sheet 1 shows the sound reduction index of every one-third octave band together with the shifted reference curve corresponding to the measured weighted sound reduction index.

Descriptions of test rooms, test method, and evaluation method are found in the Appendix.

Remark
The test results apply only to the object tested.

DELTA, 31 May 2016

Mads Bolberg
Acoustics
1. **Introduction**

 At the request of Scanglas A/S, laboratory measurement of the sound reduction index was carried out for a GLASVÆGGE & DØRE BY GLASSOLUTIONS 10 mm Planiclear glass partition wall with a 10 mm Planiclear glass door.

2. **Description of the test object**

 The glass partition wall construction is based on approx. 2670 mm high 10 mm Planiclear glass elements placed in a perimeter frame of extruded aluminum. The aluminum profiles of the frame are designated H3104, H3105, and H3106.

 The door is of 10 mm Planiclear glass and fitted with a Glassolutions acoustic drop seal. The dimension of the door is approx. 2040 mm x 825 mm. The doorframe is of extruded aluminum.

 The 10 mm thick glass elements are mounted in the frame between rubber sealings. The openings between glass elements are filled using clear silicone.

 The total thickness of the wall including mounting profiles but excluding the door frame is approx. 25 mm. The total thickness of the door frame is approx. 65 mm. The weight of the wall and door is approx. 24 kg/m².

 Further details are shown on page 9 and 10 in drawings prepared by the client.

3. **Mounting in the laboratory**

 The glass partition wall was mounted between two reverberation rooms in a 1.15 m concrete frame with a width of 3.70 m and a height of 2.69 m.

 The wall was built using 4 glass elements. The approximately width of three of the elements is 935 mm. Above the door the wall consisted of an approx. 860 mm x 610 mm element. The elements were sealed with silicone, which was left to dry for at least 3 hours before measuring. Filler are applied at perimeter edges of the test wall.

 The niche depth from the surface of the wall against the source room and the receiving room was approx. 445 mm and 680 mm. The niche depth from the door frame to the source room and the receiving room was approx. 425 mm and 660 mm.

 The mounting was carried out by the client. Pictures of the mounting in the laboratory are shown on page 7 and 8.
4. **Test method**

The measurement was carried out according to the test method of EN ISO 10140:2010 part 1, 2, 4, and 5 “Acoustics - Laboratory measurement of sound insulation of building elements”.

The measurement was performed in Rooms 003 and 004, Building 355 at the Technical University of Denmark.

A brief description of the reverberant rooms and test procedures is found in the Appendix.

5. **Instrumentation**

The following instruments were used for the test:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Type</th>
<th>A&V No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Level Meter / Analyser</td>
<td>Brüel & Kjær 2270</td>
<td>1498L</td>
</tr>
<tr>
<td>Measuring Microphone</td>
<td>Brüel & Kjær 4144</td>
<td>859L</td>
</tr>
<tr>
<td>Measuring Microphone</td>
<td>Brüel & Kjær 4144</td>
<td>1256L</td>
</tr>
<tr>
<td>Microphone Preamplifier</td>
<td>Brüel & Kjær 2619</td>
<td>853L</td>
</tr>
<tr>
<td>Microphone Preamplifier</td>
<td>Brüel & Kjær 2619</td>
<td>855L</td>
</tr>
<tr>
<td>Microphone Power Supply</td>
<td>Brüel & Kjær 2804</td>
<td>1585L</td>
</tr>
<tr>
<td>Microphone Power Supply</td>
<td>Brüel & Kjær 5935</td>
<td>1040L</td>
</tr>
<tr>
<td>Sound Level Calibrator</td>
<td>Brüel & Kjær 4231</td>
<td>1158L</td>
</tr>
<tr>
<td>Sensor for Temperature and Humidity</td>
<td>Ebro, EBI 20-TH1</td>
<td>1586L</td>
</tr>
</tbody>
</table>

6. **Measurement conditions**

Date of test: 31 March 2016.

Temperature and relative humidity in the test rooms during the measurement:

\[17 \, ^\circ{C}, \, 50\, \% \, RH \]
7. **Test results**

The sound reduction index, \(R \), per one-third octave from 100 Hz to 5000 Hz is shown in tabular form and graphically on Graph Sheet 1.

Test results evaluated according to EN ISO 717-1:2013:

\[
R_w (C; C_{tr}) = 31 (-2; -3) \text{ dB}
\]

Description of the evaluation method is found in the Appendix.

8. **Measurement uncertainty**

According to EN ISO 12999-1:2014 precision of laboratory measurements expressed as the reproducibility standard deviations are as follows (two-sided 95 % confidence level and \(k = 1.96 \)).

<table>
<thead>
<tr>
<th>Value</th>
<th>(\sigma_{Rw}) ((k = 1.96), two-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_w)</td>
<td>(\pm 2.4) dB</td>
</tr>
<tr>
<td>(R_w + C)</td>
<td>(\pm 2.5) dB</td>
</tr>
<tr>
<td>(R_w + C_{tr})</td>
<td>(\pm 2.9) dB</td>
</tr>
</tbody>
</table>
Laboratory measurement of sound reduction index according to EN ISO 10140:2010

Client: Scanglas A/S, Saint-Gobain Denmark, Robert Jacobsens Vej 62A, 2300 København S, Denmark

Date of test: 31 March 2016

Description of the test specimen: GLASVÆGGE & -DØRE BY GLASSOLUTIONS10 mm Planiclear glass partition wall with a 10 mm Planiclear glass door. The perimeter frame of the partition wall and the doorframe are of extruded aluminium profiles. Description of the test object and the mounting in the laboratory appears in section 2 and 3 of the report.

Test specimen mounted by: Scanglas A/S

Area of test opening: 10.0 m²
Mass per unit area: 24 kg/m²
Air temperature: 17 °C
Air humidity: 50 % RH
Source room volume: 230 m³
Receiving room volume: 215 m³

<table>
<thead>
<tr>
<th>Frequency f [Hz]</th>
<th>R One-third octave [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>18.2</td>
</tr>
<tr>
<td>125</td>
<td>22.4</td>
</tr>
<tr>
<td>145</td>
<td>23.4</td>
</tr>
<tr>
<td>200</td>
<td>24.2</td>
</tr>
<tr>
<td>250</td>
<td>26.9</td>
</tr>
<tr>
<td>315</td>
<td>27.9</td>
</tr>
<tr>
<td>400</td>
<td>30.4</td>
</tr>
<tr>
<td>500</td>
<td>30.8</td>
</tr>
<tr>
<td>630</td>
<td>32.5</td>
</tr>
<tr>
<td>800</td>
<td>32.9</td>
</tr>
<tr>
<td>1000</td>
<td>31.4</td>
</tr>
<tr>
<td>1250</td>
<td>25.7</td>
</tr>
<tr>
<td>1600</td>
<td>26.6</td>
</tr>
<tr>
<td>2000</td>
<td>31.4</td>
</tr>
<tr>
<td>2500</td>
<td>34.2</td>
</tr>
<tr>
<td>3150</td>
<td>35.7</td>
</tr>
<tr>
<td>4000</td>
<td>37.4</td>
</tr>
<tr>
<td>5000</td>
<td>39.6</td>
</tr>
</tbody>
</table>

Weighted sound reduction index according to EN ISO 717-1:2013:

\[R_w (C; C_t) = 31 (-2; -3) \text{ dB} \]

Evaluation based on laboratory measurement results obtained by an engineering method EN ISO 10140:2010 part 1, 2, 4 and 5.

DELTA, 31 May 2016

Mads Bolberg, Acoustics
Pictures of the mounting in the laboratory at the Technical University of Denmark
Sectional drawings of the mounting profile HK3104, HK3105, and HK3106

HK3104: Side profile

HK3105: Click profile

HK3106: U-profile

HK3101: Doorframe

Drawings are prepared by the client and are not in scale.
Drawings of the test wall

Glass partition test wall and door in test opening including mounting profiles.

Size details of glass elements and spacing used in test wall.

Drawings are prepared by the client and are not in scale.
Description of test rooms

When measuring the sound reduction index, R, according to EN ISO 10140:2010 part 1, 2, and 4, the test specimen is placed between a source room and a receiving room meeting the requirements of EN ISO 10140:2010 part 5.

Source room:
- Volume approx. 230 m3
- Diffusing elements of concrete and of damped steel plate
- Reverberation time ≤ 8 s

Receiving room:
- Volume approx. 215 m3
- Diffusing elements of concrete and of damped steel plate
- Reverberation time ≤ 7 s

Test opening:
- 3.70×2.69 m in a concrete frame with depth 800 mm

Depth of test opening: 1.15 m

Total partition wall area: 30.9 m2

Test method

Measurements of the sound reduction index, R, according to EN ISO 10140:2010.

Loudspeaker system: Dodecahedron loudspeaker in two positions. Open loudspeaker in one corner position for measurement of reverberation time.

Microphone system: Rotating (16 s/rotation). Radius 1.25 m. Integration time: 32 s for measurements of sound pressure levels. The reverberation time is measured in 6 microphone positions distributed on the microphone path.

Sound signal: Equalized wideband pink noise.

Filters: Frequency analyzer with one-third octave band filters with centre frequencies within the frequency range 100-5000 Hz.

Background noise: The sound pressure level in the receiving room is corrected for background noise if affected.

Evaluation method

To evaluate the airborne sound insulation of the test specimen, the weighted sound reduction index, R_w, is used. The value is determined according to EN ISO 717-1:2013.

When determining the evaluation value, R_w, the measured results of the sound reduction index, R, per one-third octave from 100 Hz to 3150 Hz are compared with a reference curve. The reference curve is shifted in steps of 1 dB towards the measured curve until the sum of unfavourable deviations is as large as possible, but not more than 32.0 dB. An unfavourable deviation at a particular frequency occurs when the test result is less than the value of the reference curve.

The evaluation value, R_w, is determined from the shifted reference curve as the value in dB at 500 Hz.

Additionally, the spectrum adaptation terms, C and C_{tr}, for A-weighted pink noise and A-weighted urban traffic noise are calculated. These adaptation terms are stated in the report in brackets after the R_w-value.